Part Number Hot Search : 
ACTF433 MAX171 SL102 STR4A80 IRG4BC MC30A BC557 CM15010
Product Description
Full Text Search
 

To Download IRGB5B120KD Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRGB5B120KD insulated gate bipolar transistor with ultrafast soft recovery diode  parameter min. typ. max. units r jc junction-to-case - igbt ??? ??? 1.4 r jc junction-to-case - diode ??? ??? 2.8 c/w r cs case-to-sink, flat, greased surface ??? 0.50 ??? r ja junction-to-ambient, typical socket mount ??? ??? 62 wt weight ??? 2 (0.07) ??? g (oz) thermal resistance 10/14/02 absolute maximum ratings  parameter max. units v ces collector-to-emitter voltage 1200 v i c @ t c = 25c continuous collector current 12 i c @ t c = 100c continuous collector current 6.0 i cm pulsed collector current 24 i lm clamped inductive load current  24 a i f @ t c = 25c diode continuous forward current 12 i f @ t c = 100c diode continuous forward current 6.0 i fm diode maximum forward current 24 v ge gate-to-emitter voltage 20 v p d @ t c = 25c maximum power dissipation 89 p d @ t c = 100c maximum power dissipation 36 t j operating junction and -55 to +150 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) mounting torque, 6-32 or m3 screw. 10 lbfin (1.1 nm) features  low vce (on) non punch through igbt technology.  low diode vf.  10s short circuit capability.  square rbsoa.  ultrasoft diode reverse recovery characteristics.  positive vce (on) temperature coefficient.  to-220 package.  www.irf.com 1 benefits  benchmark efficiency for motor control.  rugged transient performance.  low emi.  excellent current sharing in parallel operation. e g n-channel c v ces = 1200v i c = 6.0a, t c =100c t sc > 10s, t j =150c v ce(on) typ. = 2.75v to-220ab  
IRGB5B120KD 2 www.irf.com note:  v cc = 80% (v ces ), v ge = 15v, l = 100h, r g = 50 ?.  energy losses include "tail" and diode reverse recovery. switching characteristics @ t j = 25c (unless otherwise specified) electrical characteristics @ t j = 25c (unless otherwise specified) ref.fig. 5, 6,7 9,10,11 9,10,11 12 parameter min. typ. max. units conditions v (br)ces collector-to-emitter breakdown voltage 1200 ??? ??? v v ge = 0v, i c = 500a ? v (br)ces / ? t j temperature coeff. of breakdown voltage ??? 1.15 ??? v/c v ge = 0v, i c = 1.0ma, (25c-125c) v ce(on) collector-to-emitter saturation voltage ??? 2.75 3.0 i c = 6.0a v ge = 15v ??? 3.36 3.7 v i c = 6.0a v ge = 15v t j = 125c v ge(th) gate threshold voltage 4.0 5.0 6.0 v v ce = v ge , i c = 250a ? v ge(th) / ? t j temperature coeff. of threshold voltage ??? -11 ??? mv/c v ce = v ge , i c = 1.0ma, (25c-125c) g fe forward transconductance ??? 2.6 ??? s v ce = 50v, i c = 6.0a, pw=80s i ces zero gate voltage collector current ??? ??? 100 a v ge = 0v, v ce = 1200v ??? 66 200 v ge = 0v, v ce = 1200v, t j = 125c v fm diode forward voltage drop ??? 2.13 2.45 i f = 6.0a ??? 2.38 2.75 v i f = 6.0a t j = 125c i ges gate-to-emitter leakage current ??? ??? 100 na v ge = 20v 8 parameter min. typ. max. units conditions qg total gate charge (turn-on) ??? 25 38 i c = 6.0a qge gate - emitter charge (turn-on) ??? 3.7 5.6 nc v cc = 800v qgc gate - collector charge (turn-on) ??? 13 20 v ge = 15v e on turn-on switching loss ??? 390 440 j i c = 6.0a, v cc = 600v e off turn-off switching loss ??? 330 440 v ge = 15v,r g = 50 ?, l =3.7mh e tot total switching loss ??? 720 880 ls = 150nh t j = 25c  t d(on) turn-on delay time ??? 22 29 i c = 6.0a, v cc = 600v t r rise time ??? 19 27 v ge = 15v, r g = 50 ? l =3.7mh t d(off) turn-off delay time ??? 100 120 ns ls = 150nh, t j = 25c t f fall time ??? 19 25 e on turn-on switching loss ??? 440 660 i c = 6.0a, v cc = 600v e off turn-off switching loss ??? 370 560 j v ge = 15v,r g = 50 ?, l =3.7mh e tot total switching loss ??? 810 1220 ls = 150nh t j = 125c  t d(on) turn-on delay time ??? 21 27 i c = 6.0a, v cc = 600v t r rise time ??? 18 25 v ge = 15v, r g = 50 ? l =3.7mh t d(off) turn-off delay time ??? 110 150 ns ls = 150nh, t j = 125c t f fall time ??? 22 29 c ies input capacitance ??? 370 ??? v ge = 0v c oes output capacitance ??? 33 ??? pf v cc = 30v c res reverse transfer capacitance ??? 11 ??? f = 1.0mhz t j = 150c, i c = 24a, vp =1200v v cc = 1000v, v ge = +15v to 0v, s t j = 150c, vp =1200v, r g = 50 ? v cc = 900v, v ge = +15v to 0v erec rev erse recovery energy of the diode ??? 360 ??? j t j = 125c t rr diode reverse recovery time ??? 160 ??? ns v cc = 600v, i f = 6.0a, l = 2.0mh i rr diode peak reverse recovery current ??? 9.0 ??? a v ge = 15v,r g = 50 ?, ls = 150nh rbsoa rev erse bias safe operting area full square scsoa short circuit safe operting area 10 ??? ??? ref.fig. 23 ct1 ct4 ct4 13,15 wf1wf2 4 ct2 ct3 wf4 17,18,19 20, 21 ct4,wf3 ct4 r g =50 ? 14, 16 ct4 wf1 wf2 22
IRGB5B120KD www.irf.com 3 fig. 1 - maximum dc collector current vs. case temperature fig. 2 - power dissipation vs. case temperature fig. 3 - forward soa t c = 25c; t j 150c fig. 4 - reverse bias soa t j = 150c; v ge =15v 0 50 100 150 200 t c (c) 0 20 40 60 80 100 p t o t ( w ) 10 100 1000 10000 v ce (v) 0 1 10 100 i c a ) 0 20 40 60 80 100 120 140 160 t c (c) 0 2 4 6 8 10 12 14 i c ( a ) 1 10 100 1000 10000 v ce (v) 0.01 0.1 1 10 100 i c ( a ) 10 s 100 s 1ms 10ms dc
IRGB5B120KD 4 www.irf.com fig. 6 - typ. igbt output characteristics t j = 25c; tp = 80s fig. 5 - typ. igbt output characteristics t j = -40c; tp = 80s fig. 8 - typ. diode forward characteristics tp = 80s fig. 7 - typ. igbt output characteristics t j = 125c; tp = 80s 0.0 1.0 2.0 3.0 4.0 v f (v) 0 4 8 12 16 20 i f ( a ) -40c 25c 125c 02468 v ce (v) 0 4 8 12 16 20 i c e ( a ) v ge = 18v v ge = 15v v ge = 12v v ge = 10v v ge = 8.0v 02468 v ce (v) 0 4 8 12 16 20 i c e ( a ) v ge = 18v v ge = 15v v ge = 12v v ge = 10v v ge = 8.0v 02468 v ce (v) 0 4 8 12 16 20 i c e ( a ) v ge = 18v vge = 15v vge = 12v vge = 10v vge = 8.0v
IRGB5B120KD www.irf.com 5 fig. 10 - typical v ce vs. v ge t j = 25c fig. 9 - typical v ce vs. v ge t j = -40c fig. 11 - typical v ce vs. v ge t j = 125c fig. 12 - typ. transfer characteristics v ce = 50v; tp = 10s 5 101520 v ge (v ) 2 4 6 8 10 12 14 16 18 20 v c e ( v ) i ce = 6.0a i ce = 12a i ce = 24a 5 101520 v ge (v ) 0 10 20 30 40 50 i c e ( a ) t j = 25c t j = 125c t j = 125c t j = 25c 5101520 v ge (v) 2 4 6 8 10 12 14 16 18 20 v c e ( v ) i ce = 6.0a i ce = 12a i ce = 24a 5101520 v ge (v) 0 2 4 6 8 10 12 14 16 18 20 v c e ( v ) i ce = 6.0a i ce = 12a i ce = 24a
IRGB5B120KD 6 www.irf.com fig. 14 - typ. switching time vs. i c t j = 125c; l=3.7mh; v ce = 600v r g = 50 ? ; v ge = 15v fig. 13 - typ. energy loss vs. i c t j = 125c; l=3.7mh; v ce = 600v r g = 50 ? ; v ge = 15v fig. 16 - typ. switching time vs. r g t j = 125c; l=3.7mh; v ce = 600v i ce = 6.0a; v ge = 15v fig. 15 - typ. energy loss vs. r g t j = 125c; l=3.7mh; v ce = 600v i ce = 6.0a; v ge = 15v 0 100 200 300 400 r g ( ? ) 10 100 1000 s w i c h i n g t i m e ( n s ) t r td off t f td on 048121620 i c (a) 0 200 400 600 800 1000 1200 e n e r g y ( j ) e off e on 4 6 8 10 12 14 i c (a) 10 100 1000 s w i c h i n g t i m e ( n s ) t r td off t f td on 0 100 200 300 400 r g ( ? ) 0 200 400 600 800 1000 1200 1400 e n e r g y ( j ) e on e off
IRGB5B120KD www.irf.com 7 fig. 17 - typical diode i rr vs. i f t j = 125c fig. 18 - typical diode i rr vs. r g t j = 125c; i f = 6.0a fig. 20 - typical diode q rr v cc = 600v; v ge = 15v;t j = 125c fig. 19 - typical diode i rr vs. di f /dt v cc = 600v; v ge = 15v; i f = 6.0a; t j = 125c 0 100 200 300 400 500 r g ( ?) 0 2 4 6 8 10 i r r ( a ) 0 2 4 6 8 10 12 i f (a) 0 2 4 6 8 10 i r r ( a ) r g = 50 ? r g = 150 ? r g = 270 ? r g = 470 ? 0 100 200 300 400 500 di f /dt (a/s) 0 2 4 6 8 10 i r r ( a ) 0 100 200 300 400 500 600 di f /dt (a/s) 0 0.4 0.8 1.2 1.6 q r r ( c ) 50 ? 150 ? 270 ? 470 ? 9.0a 6.0a 3.0a
IRGB5B120KD 8 www.irf.com fig. 21 - typical diode e rr vs. i f t j = 125c fig. 23 - typical gate charge vs. v ge i ce = 6.0a; l = 600h fig. 22 - typ. capacitance vs. v ce v ge = 0v; f = 1mhz 0 20 40 60 80 100 v ce (v ) 1 10 100 1000 c a p a c i t a n c e ( p f ) cies coes cres 0 5 10 15 20 25 30 q g , total gate charge (nc) 0 2 4 6 8 10 12 14 16 v g e ( v ) 600v 800v 0 2 4 6 8 10 i f (a) 0 100 200 300 400 500 e n e r g y ( j ) 50 ? 150 ? 270 ? 470 ?
IRGB5B120KD www.irf.com 9 fig 25. maximum transient thermal impedance, junction-to-case (diode) fig 24. maximum transient thermal impedance, junction-to-case (igbt) 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 1.024 0.001014 0.378 0.017595 j j 1 1 2 2 r 1 r 1 r 2 r 2 c ci i / ri ci= i / ri 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 1.045 0.000395 1.214 0.001078 0.540 1.1386 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci i / ri ci= i / ri
IRGB5B120KD 10 www.irf.com l rg 80 v dut 1000v fig.c.t.1 - gate charge circuit (turn-off) fig.c.t.2 - rbsoa circuit 1k vcc dut 0 l fig.c.t.3 - s.c. soa circuit fig.c.t.4 - switching loss circuit fig.c.t.5 - resistive load circuit d c driver dut 900v l rg vcc diode clamp / dut dut / driver - 5v rg vcc dut r = v cc i cm
IRGB5B120KD www.irf.com 11 fig.wf2-typ. turn-on loss waveform @ t j =125c using fig. ct4 fig.wf2-typ. turn-off loss waveform @ t j =125c using fig. ct4 -100 0 100 200 300 400 500 600 700 800 0.20.40.60.8 1 time (us) vce (v) -1 0 1 2 3 4 5 6 7 8 ice (a) eo f f l o s s 5% vce 5% ice 90% ice tf -800 -700 -600 -500 -400 -300 -200 -100 0 100 200 -0.25 -0.10 0.05 0.20 0.35 time (s ) vf (v) -12 -10 -8 -6 -4 -2 0 2 4 6 8 if (a) peak ir r qrr trr 10% peak ir r fig.wf3-typ. diode recovery waveform @ t j =125c using fig. ct4 fig.wf4-typ. s.c. waveform @ t c =150c using fig. ct3 -200 0 200 400 600 800 1000 1200 1400 1600 1800 0.3 0.4 0.5 0.6 0.7 0.8 tim e (us) vce (v) -2 0 2 4 6 8 10 12 14 16 18 ice (a) eon loss 10% test current 5% vce 90% test current test current tr 0 100 200 300 400 500 600 700 800 900 1000 0.00 10.00 20.00 30.00 40.00 50.00 time(us) vce (v) 0 20 40 60 80 100 ice (a)    
IRGB5B120KD 12 www.irf.com 
   package outline to-220ab dimensions are shown in millimeters (inches) part number international rectifier logo example : this is an irf1010 with assembly lot code 9b1m assembly lot code date code (yyww) yy = year ww = week 9246 irf1010 9b 1m a ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 10/02 data and specifications subject to change without notice. this product has been designed and qualified for industrial market. qualification standards can be found on ir?s web site. lead assignments 1 - gate 2 - drain 3 - source 4 - drain - b - 1.32 (.052) 1.22 (.048) 3x 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 4.69 (.185) 4.20 (.165) 3x 0.93 (.037) 0.69 (.027) 4.06 (.160) 3.55 (.140) 1.15 (.045) min 6.47 (.255) 6.10 (.240) 3.78 (.149) 3.54 (.139) - a - 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600) 14.84 (.584) 14.09 (.555) 13.47 (.530) 3x 1.40 (.055) 1.15 (.045) 2.54 (.100) 2x 0.36 (.014) m b a m 4 1 2 3 notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 3 outline conforms to jedec outline to-220ab. 2 controlling dimension : inch 4 heatsink & lead measurements do n ot include burrs. lead assignments 1-gate 2-collector 3-emitter 4-collector to-220ab package is not recommended for surface mount application


▲Up To Search▲   

 
Price & Availability of IRGB5B120KD

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X